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ABSTRACT 
 

Aircraft maintenance is a core function in support of Air Force operations. The 

maintenance function encompasses tasks such as aircraft servicing, launch and recovery, 

scheduled maintenance, component repair, as well the technical training of new recruits. 

A variety of potential health and safety hazards exist in the environments where 

maintenance tasks are performed.  Therefore, accomplishing maintenance tasks correctly 

is fundamental to personal safety and equipment integrity.  The ability to accurately 

detect and recognize the actions of personnel performing maintenance tasks without the 

constant oversight of a maintenance ―expert‖ or instructor would be advantageous to the 

training of new recruits. This project explored and evaluated the utility of using a 

contemporary full body motion capture suit including any software framework 

constraints associated with the insertion of this technology within the aircraft 

maintenance domain. A prototype motion capture recognition system determines a 

subject‘s current task from among a set of potential maintenance-like operations. This 

design includes the functionalities, constraints, and data requirements for motion-capture-

based maintenance training aids. 
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1. SUMMARY 

 
The primary objective of this research project is to test the ease of use, reliability, and 

feasibility of untethered motion capture systems in the maintenance domain. A variety of 

sensors were tested to determine which worked best in situations comparable to a 

flightline maintenance environment.  A second objective is to evaluate the motion data 

collected during a maintenance task scenario for the purpose of instruction or procedure 

generation and maintenance training. 

 

In Section 2, we outline the general technological aspects of human motion capture that 

would allow field use (outside the laboratory setting) in typical Air Force maintenance 

environments.  Section 2 also discusses and evaluates the current state-of-the-art in 

commercial, untethered motion capture technology.  Section 3 presents an overview of 

the task recognition system we have developed to be used in conjunction with an 

appropriate motion capture system.  Section 4 covers the results of experiments that 

demonstrate our system‘s validity as a recognition tool.  Section 5 concludes with 

recommendations for future work on a virtual coaching system as an instructional aid.  

 

2. INTRODUCTION 

 
Maintenance tasks are fundamental operations in various training and repair 

environments, such as the flightline at an Air Force base, a hangar facility for scheduled 

maintenance, and at a technical training school for new recruits.  Providing a training 

system that automatically detects and monitors a novice subject‘s actions has potential 

advantages.  First, it provides the user the ability to experience a training environment 

containing 3D models of virtual equipment that do not deteriorate under the wear and tear 

of repetitive operations.  Second, this system provides a safe environment for the subject 

to learn about various hazards without putting the trainee or the equipment at risk.  

Finally, it provides the basis for a training system in which all maintenance trainers can 

input their knowledge, creating a ―super-trainer‖ system to monitor the activities of 

novices.    

 

We thus explored and evaluated the utility of using a contemporary full body motion 

capture suit including any framework or architecture constraints associated with the 

insertion of this technology within the aircraft maintenance domain. Additionally, we 

developed a prototype motion capture architecture system to determine a subject‘s 

current task from among a set of potential maintenance-like operations. This design 

includes the functionalities, constraints, and data requirements for motion-capture-based 

maintenance training aids.  

 

2.1 Evaluation of Motion Capture Technology 

 
A Motion Capture system tracks human movements several times per second and records 

the data. This data can be used to animate virtual humans, monitor the behavior of the 
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real human in the motion capture suit, and do subsequent data analysis of the subject‘s 

performance.  Available motion capture technology systems that are potentially suitable 

for the aircraft maintenance domain are limited for two main reasons.  First, ―tethered‖ 

hardware systems require the subject to perform actions in a predefined (―studio‖ or 

laboratory) capture space and not an arbitrary maintenance environment, and are thus 

unusable in a maintenance scenario in which the equipment cannot be transported into the 

small, predefined space.  Secondly, the magnetometers used by ―untethered‖ systems 

pose a potential problem in their interaction with the metal inherent to aircraft 

maintenance scenarios.   

 

We investigated four commercial motion capture suits and systems that we believed 

might be appropriate for untethered use in cluttered metallic environments: the Innalab 

3DSuit, Animazoo GypsyGyro-18, the Xsens Moven, and the Measurand ShapeWrap 

II (three of these suits are shown in Figure 1). All are based on inertial and gyroscope 

sensors or fiber optics to gauge movement and joint angles of the capture subject.  We 

compared these four suits against a baseline optical motion capture system (our existing 

Ascension ReActor2 Digital Active-Optical Motion Capture System) and determined the 

Xsens Moven system was capable of overcoming most of the metallic interference in the 

environment.  See Appendix A and Appendix B for more information on our tests. 

 

 
 

Figure 1: Motion Capture Suits  
(From left to right) Xsens Moven suit, Measurand ShapeWrap II, and the Animazoo GypsyGyro-18. 
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The Innalab 3DSuit captures movements via 17 inertial motion sensors placed on bands 

that wrap the performer‘s body. Each of the inertial motion sensors consist of gyroscopes, 

accelerometers, and magnetometers. The gyroscopes measure orientation based on the 

angular momentum of the limb they are tracking, the accelerometer measures the limb‘s 

acceleration, and the magnetometer measures position according to the surrounding 

magnetic field. Joint rotation is sensed around 3 axes and, with complex navigation 

algorithms, the sensors calculate a joint‘s pitch, yaw and roll angles. The communication 

device then combines the data from all sensors and calculates the positions of limbs 

relative to the "root bone", which is most often a foot that is in contact with the floor.  

 

The Animazoo GypsyGyro-18 captures movements via 18 inertial rotational gyroscope 

sensors placed on the limbs on a spandex suit capturing up to 120 frames of motion per 

second. Each sensor has a published resolution of 0.01 degrees, and root mean squared 

(RMS) accuracy of 0.1 degree. The root position tracking is done by footstep calculating 

software. Orientations from the legs are extrapolated to give a position similar to the 

Innalab 3DSuit. 

 

The Xsens Moven Inertial Motion Capture suit captures movements via 16 inertial 

rotational gyroscope sensors placed on the limbs on a spandex suit capturing up to 120 

frames per second. The software factors simple acceleration into its sensors to allow short 

vertical changes such as jumping or cartwheel motions. The system integrates a 

biomechanical human model to more fully filter the input data for accuracy.  

 

The Measurand ShapeWrap II suit uses 4 ―ShapeTapes‖ that flex around the subject‘s 

arms and legs and senses data at 80-90 Hz.  Additionally, the system uses 4 gyroscopes to 

alleviate ―pose drift.‖  Pose drift occurs when the captured joint data locations do not 

properly form a human skeleton, such as changing lengths of bone segments between 

joints. Pose drift primarily occurs because the system uses no fixed cameras or spatial 

reference points. Therefore, it is not capable of the high accuracy of camera-based 

systems.  In particular, the ShapeWrap system cannot accurately establish the position of 

the person in a world coordinate system.  The ShapeWrap II does not suffer from the 

occlusion problems that occur with optical systems when an object occludes the sensor 

and disrupts the capture.  It also captures very smooth data regardless of position or 

orientation in the scene. The ShapeTape wires are extremely cumbersome, however, and 

could easily get snagged in a complex environment. 

 

2.2 Testing Motion Capture in a Real World Environment  

 

We tested the Xsens Moven suit with a maintenance person in a real environment (Figure 

2) at the Naval Sea Systems Command (NAVSEA) base in Philadelphia. The NAVSEA 

operator dressed in the Moven suit and performed simple maintenance tasks on a test 

water filtration system. We captured and evaluated motion data from a series of tests to 

determine how accurate the system worked in a real scenario.  Tests included walking 

about 100 meters away from the capture computer in the large warehouse space, 

replacing a cap on a water holder, opening a panel and screwing in a screw, climbing a 
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ladder, and doing a contrived reaching motion that required the subject to crawl around in 

the equipment.  

 

   

   
 

Figure 2: Real World Environment Test   
Images of Moven suit test at NAVSEA on real equipment. 

 

All tests were successfully performed except for one. The ladder climbing test failed 

because the motion capture subject had to translate (move) vertically for long periods of 

time.  This failure was expected because it is a built-in function of the Movens system to 

always consider one of the foot sensors to be in contact with the ground plane. The suit 

allows a subject‘s feet to be off the ground for only brief periods of time for actions such 

as walking, running, cartwheels, jumps, etc. When the subject crawled around in the 

equipment, 7 out of 8 captures returned good data, while one capture returned inaccurate 

data. In a cluttered warehouse, the subject walked a little over 100 meters before 

inaccurate data was returned. The screwdriver motions and water cap tests were 

performed accurately. 

 

Hand poses and joint motions were independently collected using a right-hand wireless 

CyberGlove. 

 

3. SYSTEM DESIGN METHODS 

 

3.1 System Architectural Design 

Figure 3 provides an overview of the general software system developed for this research 

project.  The procedural components of the system are described below. 

1. Subject selects a maintenance task: The subject specifies which task they will 

perform. This is a general task such as ‗fix landing gear‘, or ‗repair cockpit 

control panel‘. This step ensures that the subject is performing a directed action, 
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and not randomly stringing motions together. Knowing the task allows the system 

to determine if anything is wrong (hazards or warnings) so it can prompt or 

correct the trainee. 

2. Motion capture the task: The subject performs the task in a motion capture suit 

and their joint poses, angles, motion, and hand shapes are quantified and 

extracted.  

3. Recognize the maintenance task: This is broken into two general parts. First, 

based on an empirical study of motion recognizers, we use ―Motion Templates‖ to 

recognize the general category of the task the subject is performing. We 

augmented a list of binary relations to compress the motion capture data. Motion 

Templates suffer from differentiating actions that are numerically ‗close‘. 

Secondly, we compute a simple distance measure to find the training instance 

closest to the given input motion to select the instanced class.  This detects more 

detailed aspects of the action being performed. 

4. Advance the finite state machine: This is a general overview of how the task is to 

be performed in a step-by-step manner as specified in Technical Order 

instructions or in their instantiation in our Parameterized Action Representation 

(PAR) system. This aids in action matching since we can break down a task into 

its relative parts, and recognize each part to ensure step correctness and that the 

task is completed in the correct order. 

5. Finish the task: The task is completed. 

 
 

Figure 3: General Software System Overview 
 

 

3.2 Demonstration Prototype Application 

 

We designed a demonstration of the system described above with two objectives.  The 

first objective was to test the suitability of the individual motion capture devices to detect 

tasks in a maintenance domain. The second objective was to evaluate the time and 



6 

 

accuracy performance of several possible algorithmic models used to classify the 

captured motions into discrete tasks.  We used full body motion capture plus a 

CyberGlove for the right hand to collect and evaluate data. We focused on techniques 

that can organize, process, and navigate a database of motion capture clips of various 

maintenance motions.  The subject is supplied with a database of maintenance ‗tasks‘, 

which are simply state machines ordering motion-capture clips from our PAR database. 

This database of tasks is useful in organizing task information suitable for action 

matching, task analysis, and job aide information relative to a desired subject-to-system 

interactive maintenance behavior. The subject performs a ‗query‘ sequence of motions 

and the system attempts to verify that the desired maintenance task is being completed 

accurately from the query sequence of motion clips being performed by the test subject. 

To accomplish the second objective – evaluating the performance of various 

classification methods – requires first establishing the existing state of the art in motion 

capture technologies. Since real time performance would be essential to the training and 

safety of the repair technician, the faster the system can verify a correctly performed task 

the better. No classification technique is optimal for all classification tasks.  By 

restricting the recognition system to a specific domain, however, a classifier can emerge 

that outperforms the others. Therefore an empirical survey is needed to determine a 

reasonable system. 

 

3.3 Motion Clip Database 

 

The action database consists of various motion clips captured from the motion capture 

system and CyberGlove data. We placed a grid of markers in space to simulate a work 

environment. We measured the 3D location of the markers so we could analyze the 

accuracy of our system. The motion classes we tested consisted of eleven short actions: 

 Grasping the lower marker 

 Grasping the middle marker 

 Grasping the upper marker 

 Using scissors on the lower marker 

 Using scissors on the middle marker 

 Using a screw driver on the lower marker 

 Using a screw driver on the middle marker 

 Tapping the upper cup with the palm of the hand 

 Kicking randomly in the space 

 Punching randomly in the space 

 Throwing a ball to a fixed location from anywhere in the space 

 

Though the actions described above may appear to be random, they do follow the 

Schlesinger-Schwartz grasping taxonomy.  Heumer et al. showed that the Schlesinger-
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Schwartz grasps were separable by performing a 2D visualization of the higher 

dimensional data, and thus this taxonomy was indeed separable and robust enough so that 

new actions could be added.  Motions were hand-annotated with the type of motion that 

was performed at capture. 

 

The longest motion in each of the 11 motion classes was uniformly time warped with 

each other so they would have the same temporal duration. Every motion in each class 

was dynamically time warped (DTW) to the longest motion in the class. Dynamic time 

warping warps two sequences non-linearly in the time dimension such that the minimum 

distance between two samples occurs when the signal features are aligned. For example, 

if two motions were performed at different frequencies, one faster than the other, DTW 

would align them properly so the temporal difference does not affect the classifier. 

 

3.4 Task Database 

 

The task database consists of small action state machines of ordered sequences of motion 

clips. For example: to open a drawer to a file cabinet, the subject first grasps the desired 

handle of the particular door, moves the thumb to unlatch the door, then pulls the arm 

back while grasping the handle. In our system, the task database consists of 5 simple 

sequences of actions so the open drawer task would consist of 5 states in the task‘s 

particular state machine: (1) grasping the drawer handle, (2) thumb unlatching, (3) arm 

movement start, (4) arm movement end, and (5) releasing the grasp on the drawer. A 

separate state machine is constructed ahead of time for each motion task based on the 

Parameterized Action Representation (PAR) system and the task‘s particular instructions. 

Our PAR system can be easily used to populate the task database from the task‘s 

particular instructions, breaking a task into smaller action state machines as necessary. 

While the subject is performing a requested task, the software system uses the PAR state 

machines to detect if the subject is not performing the correct task or taking too much 

time (stalled or confused) between tasks. Then a message can alert the subject that 

something is wrong.  

  

4. RESULTS 
 

4.1 Classifier Evaluation 

 

In order to enable our system to correctly recognize and match a subject‘s input grasp or 

motion type as a corresponding grasp or motion class, various state-of-the-art techniques 

from pattern classification were applied and analyzed.  Rather than focus on one 

particular method, a set of 28 different classifiers were tested to determine the most 

accurate and fastest for our test environment.  We tested five types of classifiers: tree, 

lazy, function, probabilistic, and rule based classifiers: 

 

(1) Tree classifiers (decision stumps, decision trees, and random trees) attempt to 

break up the classification task into a hierarchy of branch choices to lead to an 

end class. 
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(2) Lazy learners (Kstar, IB1, and LWL) search an existing database based on a 

distance metric to determine the closest class type. 

(3) Function approximators (RBF, Perceptrons, and Regression) learn the parameters 

of a function from input data and return the output class. 

(4) Probabilistic (Bayes) classifiers learn by building probability models from an 

example database. 

(5) Rule induction methods (NNge, Jrip, and Conjunctive) create rules to determine 

the correct class. 

 

Details of these particular methods are not important to this discussion, since ultimately 

performance accuracy and time are the crucial parameters. 

 

The input training database consists of a table of pre-captured motion data tagged with 

the motion type for each example capture. The input test data consists of a single new 

motion capture take. The system then returns the class type of the input data. If 

classification of new motions is required by a task, data can be added to the training 

database to expand the system‘s recognition capabilities.  

 

Each training example consists of frames of joint angles. A frame is captured at a rate of 

60 samples a second and consists of 112 joint angles (J):  22 joint angle values from the 

CyberGlove, 90 joint angle values from our full body motion capture system (30 sensors 

 3 dimensions). For each example motion there are F frames of data depending on the 

length of the captured motion. Therefore, each example motion in our database contains 

F  J feature dimensions.   The input training database consisted of roughly 500 tagged 

example motions from 8 different subjects and tagged with the class type. The input test 

data consists of a new motion capture example with an unknown class. 

 

First, we captured a large set of motions by various subjects to determine which classifier 

might be best suited for our system prototype for classifying motion capture data in a 

maintenance scenario.  All results used 10-fold cross validation in the analysis.  A 10-

fold cross validation partitions the database into 10 random subset partitions: 33% used 

for testing data, 66% used for training data. The classifier is run on each of the 10 subset 

partitions and returns 10 values. These values are averaged for the final result given in 

our result tables. This approach guards against any bias in the data. We performed our 

tests in two different settings: 

 

(1) All 8 subjects were used in both the training and testing data. 

(2) A set of two random subjects were held out of the training data partitions. 

 

This returns results for subjects who help train our system prototype, and subjects who do 

not train the system and have not been previously seen by our classifiers.  

 

4.2 Static Grasp Type Recognition Results 

 

First, to validate our general concept, we captured Schlesinger grasps using the 

CyberGlove from 8 different subjects. The Schlesinger grasp types included were 
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cylindrical, hook, lateral, palmar, spherical, and tip (Figure 4). A set of 28 different 

classifiers (see Table 1) were tested on the grasp dataset to determine the most accurate 

and the fastest classifier for our system prototype.  In this case, the input training 

database consisted of a table of pre-captured grasps tagged with the grasp type for each 

example grasp. The input test data consisted of a new grasp capture. The system then 

returns the grasp type of the input data. Each example grasp contains a feature set of 22 

joint angle values from the CyberGlove. The input training database consisted of roughly 

1400 tagged example grasp types from 8 different subjects (22 joint angles  1 frame for 

1440 grasp examples). 

 

 

Figure 4: Schlesinger Grasp Types   

Images of the six Schlesinger grasp types we captured and tested. Source: Heumer et al., p. 3 

 

Using 10-fold cross validation, the IB1 (nearest neighbor) classifier had a 98.45% correct 

classification and ran at 2.2 ms per grasp test. The IB1 classifier uses distance metrics to 

find the instance of training data that is closest to the given test instance, and predicts the 

same class as the closest example instance based on the distance metric. For grasps, our 

distance metric compares the 22 joint angles directly. Other classifiers were faster, such 

as a decision stump at 0.01 ms; however, the accuracy dropped to 32.36%.  In this 

application, the IB1 classifier is the most accurate at a reasonable runtime rate that can 

easily work in real time. Therefore, our software system uses the IB1 classifier that 

correctly classifies grasp types in real time. 

 

Table 1: Static Grasp Type Recognition Results 
Summary of our results from the grasp classifier evaluation showing the IB1 method having the best 

classification percentage against 27 other classifiers showing a statistical analysis of various methods. 

 

Classifier Group % Classified  Time/Test[ms] 

IB1  lazy  98.45% 2.2 

KStar  lazy  98.31% 29.62 

MultilayerPerceptron  functions  96.97% 0.0607 

RandomForest  trees  96.24% 0.03 

LMT  trees  94.07% 0.09 

SMO  functions  93.12% 0.07 

Logistic  functions  92.97% 0.04 
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Classifier Group % Classified  Time/Test[ms] 

SimpleLogistic  functions  92.50% 0.12 

NNge  rules  92.01% 0.05 

PART  rules  91.52% 0.03 

NBTree  trees  91.18% 0.09 

J48  trees  90.83% 0.03 

RBFNetwork  functions  80.90% 0.08 

JRip  rules  89.11% 0.12 

REPTree  trees  88.13% 0.92 

Ridor  rules  85.63% 0.34 

BayesNet  bayes  83.71% 0.23 

RandomTree  trees  82.22% 0.05 

DecisionTable  rules  76.53% 0.04 

NaiveBayes  bayes  76.32% 0.23 

NaiveBayesUpdateable  bayes  76.32% 0.34 

NaiveBayesSimple  bayes  73.88% 0.27 

NaiveBayesMultinomial  bayes  72.09% 0.03 

LWL  lazy  65% 21.3 

ComplementNaiveBayes  bayes  63.67% 0.04 

OneR  rules  43.89% 0.02 

DecisionStump  trees  32.36% 0.01 

ConjunctiveRule  rules  31.24% 0.02 

 

4.3 Classifying Motion Data using Numerical Methods 

 

The same systematic classifier evaluation (28 classifiers) was performed on the motion 

data in the motion clip database. In this evaluation, both full body motion capture and a 

CyberGlove were sampled for F frames of an example motion.  Various motion classes 

were tested as previously noted: kicking, punching, screw driver motions at particular 

points, grasping objects at various points, using a scissor motion at a particular location, 

etc. Additionally, we further sub-sampled the motion data to just 10 frames per second 

(fps) and only used the top 80% of variance of joint angles with no loss of accuracy to 

improve speed (Tables 2 and 3). 

 

Using 10-fold cross validation, the NNge method performed the best (97.4684% at 31ms 

per test).  The NNge method is similar to the IB1 method; however it differs in that it 

uses non-nested, generalized exemplars in its distance metric search. Three classifiers: 

Multilayer Perceptron, Logistic Regression, and NBTree did not terminate after running 

more than one day making them obviously poor choices for a real time method. Further, 

for large datasets Multilayer Perceptron, Logistic Regression, and NBTree all ran out of 

memory. 

 

The same systematic classifier evaluation was performed holding two random subjects 

out of the initial training data. Holding out subject data is a standard mechanism of 

testing and validating machine classifiers trained on a set of subject data acquisition runs 

to test how our system will perform with new subjects who were not used to train the 

system. 
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The numerical methods performed poorer only in cases where the held-out subject 

performed the actions differently than the subjects in the training data - primarily in the 

kicking and punching logical motions. Most errors occurred with classes such as kicking 

or punching since they were occasionally numerically similar to grasping a cup or 

motions performed at various frequencies (i.e. significantly faster or slower then training 

data), or different joint configurations (e.g. shoulder rotation could differ significantly but 

still accomplish a motion correctly). However, with numerical methods, the system 

performed more accurately for close actions.  For example, if two screwdriver motions 

were very close together, the numerical methods could determine which motion was 

being performed.  This test demonstrates that numerical methods help with the final 

location of the action but perform poorly if the action is initially performed in a unique 

way. For example, if two people perform a screwdriver motion slightly differently 

(unique shoulder rotation), numerical methods would classify each way as a distinct 

action rather than a screwdriver motion at a particular screw location, which is incorrect.  

 

Table 2: Motion Data Results for All Subjects using Numerical Classifiers  
Summary of our results from the motion data classifier evaluation using strictly numerical based methods, 

showing the NNge method has the best classification percentage against 27 other classifiers. 

 

Classifier Group 

Correctly Classified  

(10 fold CV)  Time/Test[ms] 

NNge  rules 97.4684% 31.01 

RBFNetwork  functions 97.4684% 67.09 

LMT trees 96.2025% 3621.27 

SimpleLogistic  functions 96.2025% 1781.14 

SMO  functions 96.2025% 35.19 

BayesNet  bayes 91.1392% 17.85 

RandomForest  trees 89.8734% 41.77 

IB1   lazy 88.6076% 1.65 

PART  rules 78.4810% 52.66 

J48  trees 77.2152% 19.24 

DecisionTable  rules 72.1519% 145.57 

Ridor  rules 72.1519% 128.10 

NaiveBayes bayes 67.0886% 3.54 

NaiveBayesUpdateable  bayes 67.0886% 3.04 

JRip  rules 63.2911% 47.47 

LWL  lazy 55.6962% 1.65 

RandomTree  trees 54.4304% 7.09 

REPTree  trees 45.5696% 14.05 

OneR  rules 43.0380% 2.03 

NaiveBayesMultinomial bayes 30.3797% 0.38 

ComplementNaiveBayes  bayes 13.9241% 0.63 

ConjunctiveRule rules 11.3924% 14.05 

KStar  lazy 8.8608% 0.13 

DecisionStump  trees 5.0633% 5.70 

MultilayerPerceptron   functions N/A N/A 

Logistic    functions N/A N/A 

NBTree     trees N/A N/A 
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Table 3: Motion Data Results for Unseen Subjects using Numerical Classifiers  
Summary of our results from the Motion Data Classifier evaluation using strictly numerical-based methods 

showing the NNge method has the best classification percentage against the top classifiers.  The second set 

of results holds out subjects and reruns the experiment showing how the system works for new subjects 

who have not trained the initial system; our classifiers still perform extremely well. 

 

Classifier Group 

Correctly Classified  

(10 fold CV)  Time/Test[ms] 

Tested on unseen subject    

NNge  rules 92.64% 31.01 

RBFNetwork  functions 92.64% 67.09 

LMT trees 91.38% 3621.27 

SimpleLogistic  functions 91.38% 1781.14 

SMO  functions 91.38% 35.19 

BayesNet  bayes 90.12% 17.85 

RandomForest  trees 88.56% 41.77 

IB1   lazy 85.67% 1.65 

PART  rules 73.34% 52.66 

    

 All subjects in training       

NNge  rules 97.4684% 67.09 

RBFNetwork  functions 97.4684% 31.01 

LMT trees 96.2025% 3621.27 

SimpleLogistic  functions 96.2025% 1781.14 

SMO  functions 96.2025% 35.19 

BayesNet  bayes 91.1392% 17.85 

RandomForest  trees 89.8734% 41.77 

IB1   lazy 88.6076% 1.65 
 
 

4.4 Classifying Motion Data using Logical Classification Methods 

 

Müller and Röder described a method using motion templates (MT) to extract logically 

similar motions from a database rather than use numerical methods. First, a relational 

motion feature (RMF) matrix is constructed for each motion. This matrix describes the 

boolean geometric relations {0,1} between specified points of a pose.  Applying a set of 

binary features (bf) relational motion features to a motion frame data stream of length F 

in a pose-wise fashion yields a feature matrix X {0,1}
(bf  F)

.
 

 

We constructed a set of 30 binary features to test our actions against, comprised of 

features from Müller and Röder, as well as some additional features that were relevant to 

the research (e.g., more x,y,z plane separation, acceleration features, and relative position 

features for the arms and leg sensors). These features are populated as the motion is 

captured via software.  Table 4 provides examples of the binary relations tested, and 

Figure 5 shows a visualization of the binary features captured for some test motions. 
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Table 4: Examples of Binary Relations Tested 
 

Left Hand Above Head? Right elbow Bent (angle <120 degrees)? 

Right Hand Above Head? Left knee Bent (angle <120 degrees)? 

Left Hand Above Waist? Right knee Bent (angle <120 degrees)? 

Right Hand Above Waist? Left Hand moving away from body? 

Left Foot in front of Body Left Foot moving away from body? 

Right Foot in front of Body Right Foot moving away from body? 

Shoulders Rotated Left (left forward) Hand Approaching Each other? 

Shoulders Rotated Right Feet Approaching Each other? 

Left elbow Bent (angle <120 degrees)? Y-Extents Small? 
 

 
 

 

Figure 5: Relational Motion Feature Matrix Examples   
Relational motion feature matrices for kick, lowercup, lowercup tap, and punch. 

 

 

Motion templates (MT) are created by ―learning‖ from examples in the training set of 

RMF matrices (see Figure 6).  A single MT was created for each class of motions from 

all the classes‘ RMF matrices. This is a real valued matrix between {0,1} that averages 

the RMF matrices. Each row of a MT corresponds to one relational feature similar to the 

RMF matrices. Given a set of N example motions for a specific motion class, we learn a 

meaningful MT that grasps the essence of a class.  
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Figure 6: Motion Template Examples 

Motion Template of lowercup tap, punch, kick, lowercup 

 

4.5 Logical Methods Results 

 

Motion Templates worked extremely well to differentiate general classes of motions that 

were very separable, for example, a kick against a screwdriver motion. Table 5 

demonstrates this fact. Further analyzing the cases MT‘s failed we found that MTs were 

not very accurate when attempting to differentiate motions that are functionally close 

together. For example, if a person performs a screwdriver motion on one screw, then 

performs a screwdriver motion on a screw that is a couple of inches away from the initial 

screw; logical classifiers confuse which motion is being performed. We illustrate this 

confusion in Table 6. There are two possible solutions.  The first one could resolve this 

problem with a better set of binary relation features, however breaking up the entire space 

will balloon the size of the feature matrices making the method intractable. The second 

method we propose is to construct a hybrid system that can be constructed which 

combines both logical methods and numerical methods described below.   

 

Table 5: Motion Template Recognition Results 

 
Classifier % correct Time/Test[ms] 

Tested unseen subject   

MOTION TEMPLETES 94.43% 15.82 

NNge  92.64% 67.09 

RBFNetwork  92.64% 31.01 

LMT 91.38% 3621.27 
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Classifier % correct Time/Test[ms] 

 All subjects  trained   

MOTION TEMPLETES 98.6000% 15.82 

NNge  97.4684% 67.09 

RBFNetwork  97.4684% 31.01 

LMT 96.2025% 3621.27 
 

 

Table 6: Logical Motion Confusion Matrix 
Summary of our results from the motion data classifier evaluation using strictly numerical based methods 

illustrating the confusion of logical classifiers. For motions that are very close, logical methods confuse which 

finer grain method is actually being performed, however they always return a general broad class correctly. 

 

a b c d e f g h i j k  <-- classified as 

21 0 1 1 0 0 0 0 0 0 0  a = lowercup 

0 22 0 0 2 0 0 0 0 0 0  b = middlecup 

2 0 10 0 6 0 0 0 2 0 0  c = punch 

0 0 0 21 0 0 0 0 0 0 0  d = slowercup 

0 0 0 0 21 0 0 0 0 0 0  e = smiddlecup 

0 0 0 0 0 24 0 0 0 0 0  f = tlowercup 

0 0 0 0 0 0 22 3 0 0 0  g = tuppercup 

0 0 0 0 0 0 0 24 0 0 0  h = uppercup 

0 0 0 0 4 0 5 0 19 0 2  i = kick 

0 0 0 0 0 0 0 0 0 24 0  j = hlowerup 

0 0 0 0 0 0 0 0 0 0 20  k = ball 

 

    Logically Different Motions 

    Motions of a Different Actor/ Rotations 

 

4.6 Hybrid Logical/Numerical Classification Method 

 

The final prototype was designed around a hybrid classification method to determine 

which task the subject performs.  The test results for the hybrid classification method are 

provided in Table 7.  First, a logical classifier is run to determine a broad range of what 

motion is being performed, such as a ―right quadrant screwdriver motion.‖ This broad 

class contains a hierarchy of finer grain motions which actually determine the final 

placement of the motion. To differentiate these, the results of the logical classifier were 

input to a numerical classifier for the sole purpose of operating on the set of motions in 

the logical motion classifier‘s output.  This method greatly improves the cases where both 

methods fall short and gives our prototype more robustness and accuracy. 

 

Table 7: Hybrid Recognition Results 

 
Classifier % Correct Time/Test[ms] 

Tested unseen subject   

Hybrid Method 99.93% 18.02 
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 All subjects  trained   

Hybrid Method 100% 18.02 

 

4.7 Development Issues 

 

During the implementation of our demonstration application we encountered a few issues 

that needed to be addressed. No shape-tape or inertial-based motion capture suit system 

performed as well as an optical motion capture system (such as our ReActor2), nor was 

this unexpected. The Measurand ShapeWrap II system performed extremely poorly in our 

initial evaluation at SIGGRAPH 2007, encountering a large amount of pose drift. The 

Innalab 3DSuit did not provide a software development kit (SDK) making use of the 

hardware for any real-time application impossible. The Animazoo GypsyGyro-18 

required a tedious and laborious calibration step, and still did not perform well even in 

our lab with simple metals nearby such as a file cabinet or steel in the concrete floor.  

However, after rigorous evaluation we determined the Xsens Moven Inertial Motion 

Capture system performed the best and most robustly under our tests. Still the system 

suffers from magnetic interference when in direct contact with hard metals, such as a 

heavy iron, but direct contact is a rare scenario. 

 

Overall, the CyberGlove is a well-designed and reliable device. The licensing of the 

SDK, however, caused a few problems. When installing the SDK, a code is generated. 

This code is then emailed to Immersion which returns another code to be entered in the 

authorization software to permanently unlock or authorize the software. In itself, this is 

not a bad procedure; however, this procedure only authorizes the software for one user on 

the computer where it is installed. Installing the software on another computer or 

reinstalling the software on the same computer or allowing another user on the computer 

to use the software, requires sending and receiving a new code from Immersion.  

 

Motion capture, in general, is a laborious process. Every capture session requires the 

subject to wear cumbersome sensors, undergo some calibration procedure, and stop and 

start motions to get clean data. An interesting direction of future work would be to 

conduct a statistical analysis on how many sensors are actually required to get accurate 

results. For example, if we start removing sensors, reducing their number from 16 to 1, 

can we still recover the motion the subject is performing accurately?  How less intrusive 

can we make motion capture in general so it can be seamlessly integrated into flightline 

training maintenance scenarios?  These questions may have to wait for better commercial 

motion capture technologies. 

 

5. CONCLUSIONS AND RECOMMENDATIONS 

 
Throughout this project, we have been concerned with testing the ease of use, reliability 

and feasibility of untethered motion capture systems in the maintenance domain.  

Although untethered systems are necessary to enable the movement of maintenance 

technicians, our main concern has been the reaction of the magnetometers used by these 

systems to the metal inherent in aircraft maintenance environments.  After comparing 

three different untethered suits to our own (―tethered‖) optical motion capture system – 
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which is highly accurate – we have determined that the Xsens Moven motion capture suit 

is the most reliable untethered system and suitable for those scenarios.  For this reason, 

we recommend the Xsens system to be the most suitable to monitor the motions of people 

involved in maintenance tasks during some phases of their training. 

 

In line with this recommendation, we have taken the first step towards a training system 

that uses motion capture.  Our system has learned to recognize a series of actions and 

tested well on people of varying height, weight and gender.  In the future, the results from 

this system can be fed back into a ―virtual coaching system‖ to monitor a trainee‘s 

actions and warn or correct off-nominal performance in real time. Work has begun on the 

next phase of this effort to investigate the addition to Air Force training materials of an 

interactive, computer-generated human agent to guide both a subject and a team of 

subjects during a maintenance task training scenario and to measure, evaluate, and verify 

the trainee‘s actions against an established model of task performance. 
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7. LIST OF ABBREVIATIONS 

 
DTW:  Dynamically Time Warped 

EDR:  Enhanced Data Rate 

LED:  Light-Emitting Diode 

MT:  Motion Templates 

NAVSEA: Naval Sea Systems Command 

PAR:  Paramaterized Action Representation 

RMF:  Relational Motion Feature  

RMS:  Root Mean Square  

SDK:  Software Development Kit  

USB:  Universal Serial Bus 
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APPENDIX A – DETAILED HARDWARE INFORMATION 

 
For the purpose of our evaluation of motion capture systems in maintenance domain 

environments we tested an Immersion Wireless CyberGlove II and three motion 

capture suits the Innalab 3DSuit, Animazoo GypsyGyro-18, and the Xsens Moven. We 

compared these three suits against a baseline optical motion capture system: Ascension’s 

ReActor2: Digital Active-Optical Motion Capture System. 

 

Immersion Wireless CyberGlove II 

 

This new wireless CyberGlove II (Figure A1) system provides 22 high-accuracy joint-

angle measurements. It uses resistive bend-sensing technology to transform hand and 

finger motions into real-time digital joint-angle data. Each sensor is extremely thin and 

flexible and is virtually undetectable in the lightweight elastic glove. The basic 

CyberGlove II system includes one data glove, two batteries, a battery charger, and a 

universal serial bus (USB) Bluetooth technology adapter with drivers. The CyberGlove II 

has 0.5° sensor resolution and sensor repeatability (average standard deviation between 

glove donnings) of 1°.  The typical data rate is 100 records per second. Its operating 

range is within a 30 foot radius of the USB Bluetooth adapter. 

 

 

 
Figure A1: Immersion Wireless CyberGlove II 

 

 

General Motion Capture Suit Specifications 

 

For our purposes we will examine five popular motion capture systems in detail: 

 

a) A tethered ‗capture studio‘ setup: Ascension‘s ReActor2: Digital Active-Optical 

Motion Capture System 

b) A portable system: Innalab 3DSuit Inertial Motion Capture 

c) A portable system: Animazoo GypsyGyro-18 Inertial Motion Capture 

d) A portable system: Xsens Moven Inertial Motion Capture 

e) A portable system: Measurand  ShapeWrap II Inertial  

 

Ascension’s ReActor2: Digital Active-Optical Motion Capture System 

 

The ReActor2 captures movements via 30 active optical markers placed carefully on the 

joints of the performer‘s bodysuit. Each optical marker consists of 42 embedded infra-red 



23 

 

LEDs flashing at 900Hz, which translates to about 30 frames of 30 marker animation data 

per second. 

 

ReActor2 capturing takes place in a fixed framed motion capture area. The area consists 

of 8 bars containing 544 digital detectors that actively track the signals from the markers 

when in the 3m x 4.2m x 2.4m rectangular space. Data is collected by these detectors and 

sent to a PC at a rate of 900 measurements per second. 

 

Captured data is processed by Ascension‘s FusionCore software for real-time 

visualization, editing, and exported via Ethernet to applications such as Alias‘s Motion 

Builder. 

 

Innalab 3DSuit Inertial Motion Capture System 

 

The Innalab 3DSuit captures movements via 17 inertial motion sensors placed on bands 

that wrap the performer‘s body. Each sensor operates at 120Hz, has a resolution of 0.01 

degrees, and RMS accuracy of 0.7 degree in yaw, 0.1 degree in pitch and roll. Each of the 

inertial motion sensors consist of gyroscopes, accelerometers and magnetometers. The 

gyroscopes measure orientation based on the angular momentum of the limb they‘re 

tracking, the accelerometer measures the limb‘s acceleration and the magnetometer 

measures position according to the surrounding magnetic field. Joint rotation is sensed 

around 3 axes and, with complex navigation algorithms, the sensors calculate a joint‘s 

pitch, yaw and roll angles. The communication device then combines the data from all 

sensors and calculates the positions of limbs relative to the ―root bone,‖ which is most 

often a foot that is in contact with the floor. The 3DSuit does not require the performer to 

reside in a capture area, but instead uses a Bluetooth 2.0 enhanced data rate (EDR) class 1 

USB 2.0 (VCP Baud Rate 800Kb) interface which requires the performer to be located 

within 100m of the PC capturing the data. 

 

Captured data is processed via 3DSuit software and then transferred to Alias‘ Motion 

Builder. Similar to the ReActor2 all these steps are performed ―on-the-fly‖ with 

minimum time lag. 

 

Animazoo GypsyGyro-18 

 

The Animazoo GypsyGyro-18 captures movements via 18 inertial rotational gyroscope 

sensors placed on the limbs on a spandex suit capturing up to 120 frames of motion per 

second. Each sensor has a published resolution of 0.01 degrees, and root mean squared 

(RMS) accuracy of 0.1 degree. The root position tracking is done by footstep calculating 

software. Orientations from the legs are extrapolated to give a position similar to the 

3DSuit. Also, similar to the 3DSuit, the GypsyGyro-18 is not confined to a motion 

capture area however; it must be used within 100m of the computer capturing the data. 

 

Captured data is processed via Animazoo software and then transferred to Alias Motion 

Builder. Similar to the other two suits these steps are performed with minimum lag. 
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Xsens Moven Inertial Motion Capture 

 

The Xsens Moven Inertial Motion Capture suit captures movements via 16 inertial 

rotational gyroscope sensors placed on the limbs on a spandex suit capturing up to 120 

frames of motion per second. The software factors simple acceleration into its sensors to 

allow short vertical changes such has jumping or cartwheel motions. The system 

integrates a biomechanical human model to more fully filter the input data for accuracy.  

 

The Moven is not confined to a motion capture area however; it must be used within 

100m – 300m of the computer capturing the data. 

 

Measurand ShapeWrap II 

 

The Measurand ShapeWrap II uses 4 ShapeTapes that flex around the subject‘s arms and 

legs and runs at 80-90 Hz. Additionally the system uses 4 gyroscopes to alleviate pose 

drift. 

 

Since the system uses no fixed cameras or fields, it is not capable of the high accuracy of 

camera-based systems, particularly for position of the person in a world coordinate 

system. But, ShapeWrap II does not suffer from occlusion, and captures very smooth data 

regardless of position or orientation in the scene. Additionally, the shapetape wires are 

extremely cumbersome and could easily get snagged in a complex environment. 
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APPENDIX B – DETAILED MOTION CAPTURE SYSTEM 

TESTING 

 

Subjective Performance Analysis 

 

We rigorously tested each motion capture suit (except the Measurand ShapeWrap II suit 

which failed preliminary tests) and report on the results of each test. 

 

Setting up the Suit 

 

The ReActor2 requires the subject to wear a spandex suit with Velcro patches, to allow 

for proper marker placement. The suit becomes hot during extended use and it also 

requires that a performer be of a very specific size and height. Setup took our team 

around 40-45 minutes. Each marker must be re-placed on the suit every time the subject 

performs in it. Furthermore, the ReActor2 requires a tedious setup placing the wires from 

the markers into the correct order on the control belt before every usage. 

 

The Innalab 3DSuit consists of a series of bands that are placed over work clothes, plus 

pads to be positioned in the performer‘s shoes. It is very comfortable for the performer 

and the setup took only about 5-10 minutes. 

 

The Animazoo GypsyGyro-18 and Xsens Moven requires the subject to wear a spandex 

suit with sensors built in. The suit set up took only about 5-10 minutes to dress the suit. 

The Animazoo suit required an initial calibration stage before usage that required the 

subject to hold a T-pose for around 3 minutes which was highly uncomfortable for the 

subject. The Xsens suit did not require this tedious setup process. 

 

Setting up Motion Builder 

 

The 3DSuit requires a plug-in to Motion Builder, but required only simple scaling and 

had an intuitive interface. Most of the calibration was completed after the actor stood in a 

―T-pose‖ while one button was pressed. This setup took only a couple minutes. 

 

The ReActor2 requires the software user to import the marker data from a plug-in. Upon 

receiving the marker positions, the actor must be scaled and oriented to the dimensions of 

the character‘s markers (it should be noted that many in our team have experience with 

this setup and still no one ever gets the scaling and orientation fully accurate since the 

setup is so tedious). Then each marker must be dragged to the appropriate place on the 

model‘s actor. Total time to setup took about 10 minutes.  

 

The GypsyGyro-18 and Moven processes the raw data via internal software then outputs 

BVH (Biovision hierarchical) data directly. This data can be used in commercial 

animation software such as Motionbuilder and Maya. 
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Reaching for Objects 

 

The subject was prompted to reach for each particular point on the grid (Figure B1). The 

locations in space were measured by hand, and then compared to the data from all suits 

tested to determine accuracy. All systems produce appropriate reaching behaviors, but the 

objective reaching tests of the systems – which measure the scale of the reach – are 

discussed in the numerical results section. 

 

 
Figure B1: Reaching for Objects Example  

The left avatar is the 3DSuit, right is the ReActor2. 

 

 

Climbing a Ladder 

 

The subject was required to climb a ladder and perform similar reaching motions as 

discussed in the previous test. The 3DSuit, GypsyGyro-18, Moven hardware does not 

allow vertical translation of the character, so as a person climbs a ladder, the 

corresponding character makes climbing motions, but ultimately stays grounded.  The 

ReActor2 translates upward in space appropriately. The Figure B2 shows the example of 

an inertial based system failing to capture the appropriate vertical translation. 

 

 
Figure B2: Climbing a Ladder Test 

The left avatar is the 3DSuit, right is the ReActor2 
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‘Occluded’ Reach 

 

The subject was required to lift an object from the bottom of a trash can. This test 

illustrates the first problem with optical systems, namely occlusion. Inertial systems do 

not suffer this problem. The 3DSuit, GypsyGyro-18, and Moven are able to capture 

reaching motion in a small, enclosed area, while the ReActor2 is not.  This is because the 

detectors in the ReActor2 cannot determine the location of a marker if the light-emitting 

diodes (LED‘s) in the marker are occluded.  The inertial suits do not suffer from this 

problem. Figure B3 illustrates this issue. 

 

 
Figure B3: Occluded Reach Test 

The left avatar is the 3DSuit, right is the ReActor2 

 

Self-Reference Test 

 

Here the subject was required to perform self-reference tests (Figure B4). The subject 

first touched both hands together away from the body making sure both sensors were 

touching, and then touched the sensors on the upper body and legs with the hand sensors. 

Since we know what sensors are being touched, one way to determine accuracy is to 

check whether the hand sensor and the sensor it touched had similar positions 

(accounting for the size of the sensor itself). The 3DSuit appeared to perform better 

during the Self-Referencing task than the ReActor2, the objective referencing tests of 

each system are discussed below. The Moven performed the best out of the 3 inertial suits 

tested for this particular scenario. 

 

   
Figure B4: Self-Reference Test  

The left avatar is the 3DSuit; middle is the ReActor2; far right is the Moven. 
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Exiting the ‘Capture Studio’ 

 

The subject was prompted to leave the capture volume (Figure B5). This test simply 

illustrates the second disadvantage of optical systems: they are confined to a predefined 

enclosed space. The 3DSuit, GypsyGyro-18, and Moven suit are capable of exiting the 

‗capture studio‘ and we even found that we could capture the subject while he was on the 

other side of a brick wall, in a closed room.  The ReActor2 is confined to the ‗capture 

studio‘ with the required detectors. 

 

 
Figure B5: Exiting the ‘Capture Studio’ 

The left avatar is the 3DSuit, right is the ReActor2. 

 

 

Simple Metal Experiment Capture 

 

In this test the subject performed the self reach test but placed some of the sensors on a 

metal file cabinet (Figure B6). This test demonstrated a simple metallic environment. We 

see the Animazoo GypsyGyro-18 (right image) arms crossed severely instead of touching 

showing huge pose drift where the Xsens Moven suit did not. However, the red circles 

indicate that there was some metallic interference.  

 

 

    
Figure B6: Simple Metal Experiment Capture  

The left avatar is the Moven; the right image is the GypsyGyro-18. 
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Walking Drift Test 

 

This test required the subject to walk around the environment and return to the same 

location marked with a piece of tape placed on the floor. Our hope was to confirm the 

start and end locations were the same. This did not happen with the inertial systems. They 

returned a slight error after a prolonged capture since they do not capture global 

positioning well. The Moven (Figure B7) had the best results. The GypsyGyro-18 (Figure 

B8) drifts more than the Moven avatar during captures sessions. 

 

This test demonstrates that before this system is used in a real environment, the subject 

should conduct an initial orientation step to confirm their exact location relative to the 

equipment or task. 

 

    
Figure B7: Walking Drift Test (Moven) 

Left image is prior to walking.  Right image is after the subject returned to the same physical location. 

 

 

   
Figure B8: Walking Drift Test (GypsyGyro-18)  

Left image is prior to walking.  Right image is after the subject returned to the same physical location. 

 

Objective Performance Analysis  

 

We attempted to concretely analyze the performance of each suit in controlled laboratory 

tests to gauge the accuracy of the data. The performer wore both the 3DSuit and the 

ReActor2 simultaneously while performing a variety of motions multiple times (Figure 

B9). We then averaged the L2 error at each point and presented those numbers.  We then 
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averaged the general L2 error for each suit per test. The Moven and GypsyGyro-18 suits 

were tested on two separate occasions. However, both suits were not worn 

simultaneously since we already had the baseline data from the ReActor2 and two suits at 

once was very uncomfortable for the test subject. 

 

 
               Reaching Points Test 

 
                 Self-Reference Test 

 

Figure B9: Objective Performance Examples 

 

Reaching to Set Marker Test  

 

Here the performer touched various marker points in 3D space on a grid hung from the 

ceiling in our motion capture lab. The points in the space were measured with a tape 

measure to get their actual coordinate and then were compared to the data received from 

the two suits. The grid was 3 3 rectangle. No inertial system performed as well as an 

optical system; however the Xsens Moven system showed the least error (Table B1). 

 
Table B1: Motion Capture Suit Marker Position Test Errors 

Average error for the grid of marker points.  The marker position in 3D space was hand measured and the 

end vector location was analyzed using the Motion builder software to determine the end vector‘s position. 

Tests were performed several times and the errors were averaged out for each marker position in the table. 

 

Hand Marker 

Position 

Avg. ReActor2 

Error 

Avg. 3DSuit 

Error 

Avg. 

GypsyGyro-

18 Error 

Avg. Moven  

Error 

Right Lower Left 70.5 mm 109.6 mm 89.3 mm 85.2 mm 

Right Middle Left 39.7 mm 110.6 mm 122.2 mm 76.2 mm 

Right Upper Left 2.2 mm 171.1 mm 141.5 mm 151.3 mm 

Right Lower Center 85.4 mm 83.7 mm 89.6 mm 73.8 mm 

Right Middle Center 7.6 mm 60.1 mm 56.2 mm 53.2 mm 

Right Upper Center 24 mm 144.1 mm 141.5 mm 94.3 mm 

Right Lower Right 1.4 mm 53.1 mm 51.8 mm 50.1 mm 

Right Middle Right 18.2 mm 61.8 mm 67.1 mm 51.9 mm 

Right Upper Right 11.5 mm 137.9 mm 117.0 mm 87.6 mm 

Left Lower Left 11.4 mm 41.2 mm 43.6 mm 32.5 mm 

Left Middle Left 7 mm 25.7 mm 25.7 mm 15.8 mm 

Left Upper Left 33.5 mm 136.25 mm 116.1 mm 96.5 mm 

Left Lower Center 25.6 mm 59.1 mm 54.7 mm 39.4 mm 

Left Middle Center 15.6 mm 60.1 mm 61.8 mm 20.1 mm 

Left Upper Center 28.9 mm 72.6 mm 78.2 mm 70.6 mm 



31 

 

Hand Marker 

Position 

Avg. ReActor2 

Error 

Avg. 3DSuit 

Error 

Avg. 

GypsyGyro-

18 Error 

Avg. Moven  

Error 

Left Lower Right 62.4 mm 62 mm 62.8 mm 34.2 mm 

Left Middle Right 16.4 mm 59.7 mm 51.1 mm 51.7 mm 

Left Upper Right 38.6 mm 80.2 mm 81.4 mm 60.4 mm 
AVG  ERROR: ------------------ 27.8 mm 84.8 mm 80.64 mm 63.6 mm 

 

Self-Reference Test 

 

Here the performer touched (as close as possible) one marker with another to asses a 3D 

positional error. Eight points were recorded and tracked (Table B2). 

 
Table B2: Motion Capture Self-Reference Test Errors 

Average error for self-reference tests. The two marker positions were analyzed in motion builder and the 

error reports the average of the difference in recorded position between them over several trials. 

 

Test Markers Avg. ReActor2 L2 Error Avg. 3DSuit L2 Error 

Right Hand to Right Head 78.2 mm 89.2 mm 

Left Hand to left Head 76.7 mm 84.5 mm 

Right Hand to Right Knee 80.8 mm 129.1 mm 

Left Hand to Left Knee 65.6 mm 83.4 mm 

Right Hand to Right Toe 67.2 mm 144.6 mm 

Left Hand to Left Toe 41.4 mm 104.1 mm 

Left Hand to Left Ankle 48.2 mm 48.5 mm 

AVERAGE L2 ERROR: 65.5 mm 97.6 mm 

 

Note: It should be noted that the markers for each suit do not exactly correspond with the 

other suits. This is obvious since the ReActor2 has 30 markers and the Innalab 3DSuit 

has 17. We took a measurement from the Innalab 3DSuit to the marker position on the 

ReActor2 and adjusted the data afterwards. This is apparent with the head, since the 

highest Innalab sensor only reaches the base of the neck, we took a measurement from 

that sensor to the position the ReActor2‘s forward head markers were (point of head self 

reference) and subtracted the error to make the test more fair in the resultant matrix. 

 

Motion Capture Suit Advantages/Disadvantages 

 

Ascension ReActor2  

 

Advantages 

 Fewer occlusions from cameras in passive systems employing 6-24 cameras. 

 No metallic distortions from surrounding environment. 

 Accurate capturing of a performer‘s vertical translation position. 

 Accurate capturing of running, jumping, and motions with both feet off the ground. 

 An older system.  There is better support and documentation. 



32 

 

Disadvantages 

 Subject‘s comfort level and setup of equipment. 

 Suffers from occlusions. 

 Requires a confined space to capture the motions limiting real world usability of the 

system. 

 An older system. It is not using the latest technology available to increase 

performance. 

 

Innalab 3DSuit  

 

Advantages  

 High precision orientation data. 

 Not restrictive to a motion capture studio lab space. 

 Easy setup and high subject comfort level. 

 Multifunctional. Ability to connect 3 (Arm Tracker) to 30 sensors. Therefore, 

3DSuit allows working with entire human body as well as with its limbs separately. 

 Possibility of using 3DSuit in Animation Recording Mode and in Online Mode. 

 Compatibility with optical motion capture systems. 

 Compatibility with 3D animation packages - Motion Builder, 3DsMax, Maya. 

 Minimal requirements to PC. 

 Occlusion of body parts during active movements of actors has no influence on 

performance. 

Disadvantages  

 The Innalab 3DSuit has very poor documentation because the product is still in its 

beta stages of development. 

 Heavy metals greatly interfere with the magnetometers, so large metal parts must be 

avoided. This limits the usability of the suit in a real world environment. 

 Root position is calculated assuming a foot is always in contact with the ground. 
Therefore, vertical translation of the actor is captured incorrectly. Additionally the 

system cannot correctly capture a motion where both feet are removed from the 

ground. 

 High translational errors (Figure B10) when using the foot sensors (i.e., motions   

that required walking). The foot sometimes moves backwards, and appears to slide 

during walking.  Also, the error is very noticeable when the character walks in a 

circle and the ending position does not match the starting position. Because the 

translational error was roughly the same in multiple trials, we suspect it is just a 

result of Innalab not supplying the correct body measurements in the 

documentation. 

 The foot sensor needed to be replaced part way through our session, suggesting the 

sensors are very fragile. 
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                                        Figure B10: Inertial Suit Vertical Translation Error 

 

 

 

Animazoo GypsyGyro-18  

 

Advantages 

 

 High precision orientation data. 

 Does not require filters as inertial sensors inherently lack peak or noise. 

 Rotations are taken directly from the actor‘s bones and then processed on suit 

meaning there are no complex software calculations resulting in data errors. 

 Robust SDK (software development kit) and access to internal joint angle 

information. 

 Automatic initial actor-calibration — simply 'drag and drop' points over an actor's 

digital photograph for faster and more accurate actor files. 
 

Disadvantages 

 

 Sensors are bulkier than optical, but can be worn under normal clothes. 

 Root translation will need some cleanup. 

 Still some magnetic field interference:  

Tolerance: 0.005 Gause@1m=1% Drift. 

 Most Expensive of the inertial suits. 

 Data does not reflect collection timestamps, ghost frames are added in the final 

capture and at times frames were dropped. 

 Rigidity of the skeleton propagates errors to the effectors. 

 Heavy metals greatly interfere with the magnetometers, so large metal parts must 

be avoided. This limits the usability of the suit in a real world environment. 

 Tedious per capture calibration which is burdensome to the subject. 

 No extended vertical translation capability. 
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Xsens Moven  

 

Advantages 

 

 High precision orientation data. 

 The best accuracy of the 3 inertial systems tested. 

 Automatic initial actor-calibration.  

 Biometric skeleton for better accuracy. 

 Robust SDK and access to internal joint angle information. 
 

Disadvantages 

 

 Still some magnetic field interference:  

Tolerance: 0.005 Gauss@1m=1% Drift. 

 Direct contact with heavy metals is problematic. 

 No extended vertical translation capability. 


